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Abstract 

 
The main purpose of this paper is to obtain fixed points for self maps on a complete 2 -metric 

spaces under a more general contraction type condition by using a certain continuous control 

function. Further generalization of this theorem for a pair of self maps is given, when the complete 

2-metric space is bounded. 
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Introduction 

 Park (1980) and Khan, Swaleh and S.Sess 

(1984) established a new technique to obtain 

fixed points for self maps on a 2-metric space 

by altering distances between the points with 

the use of a certain continuous control 

function. Pzthak and Sharma (1994), Sastry 

and Babu (1998, 1999) worked in this 

direction. In fact, Sastry and Babu (1999) 

discussed and established the existence of 

fixed points for the orbits of single self maps 

and pairs of self maps by using a control 

function. The purpose of using a control 

function is that it verifies and generalizes many 

known results. 

 Throughout this paper, R
+
 denotes the 

set of all non-negative real numbers N, the 

set of all natural numbers and Ф the set of 

all continuous self maps φ  of R
+ 

satisfying (i) 

φ  is monotonically increasing and (ii) φ (є) =  0 

iff  є = 0. 

 

Fixed Point Theorem for a single self map 

Theorem 1 .   
 

L et  (X ,  ρ  )  be  a  c o mp le t e  2 -me t r i c  s pac e .  T  a  s e l f  ma p  o f  X (T : X —> X) . Assume 

that T satisfies the following inequality: 

φ (ρ  (Tx,Ty,  z) )  ≤  Kmax{ φ (ρ(x,y, z)), φ (ρ (x,Tx, z)) ,  φ (ρ (y,Ty,  z) )}  (1) 

for all x, y, z Є X, K Є (0, 1), φ  Є Ф. Then T has a unique fixed point in X. 

 

Proof .  Let  x 0  Є  X .  Then def ine  the  sequence  {x n } in  X by x n  =  T
n
x 0  for     n = 1, 

2, 3 …. If xn = xn+1 for some n Є N, then Txn = xn+1 = xn such that xn 
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is a fixed point for T .  Suppose xn ≠ xn+1 for some n Є N. Take βn = ρ(xn, xn+1, z) and αn = φ (βn) 

for n = 0, 1, 2, …, ( z Є X). 

By (1),        α1   =  φ (β1) = φ (ρ(x1, x2, z)) = φ (ρ(Tx0, Tx1, z) )  

               ≤  K  max{ φ (ρ (x0, x1, z)), φ (ρ(x0, Tx0, z) ) ,  φ (ρ (x1, Tx1, z) )} 

               =  K φ (ρ(x0, Tx0, z) )  

     ⟹   α 1  ≤ Kα 0 .  

In general, we can show that α n  ≤ Kα n - 1 .  (2) 

By induction method, it is easy to see that α n  ≤ K
n
 α 0 .  

Since K
n
 ⟶ 0 as n ⟶ ∞, αn →0 as n ⟶ ∞. (3) 

By (2), α n  ≤ α n - 1  implies βn ≤ βn-1  for n = 1, 2, 3,…… 

Hence {βn} is a decreasing sequence of non-negative numbers.  

Let {βn} → β as  n → ∞.Then, by the continuity of φ,  

       αn = φ(βn) → φ(β) as n → ∞.  

Hence from (3), it follows that φ(β)= 0, which shows that β = 0. 

   i.e., lim ρ(x n,  xn+1, z) = 0 (4) 

   n→∞ 

 We now prove that {xn} is a Cauchy sequence. Otherwise, there  

exists   a n   ε  >  0  a n d  a  s e q u e n c e  { m( p ) }  a n d  n ( p )  s u c h  t h a t  m( p )  <  n ( p )  

w i t h   

ρ ( x m ( p ) ,  x n ( p ) ,  z )  ≥  ε  a n d  ρ ( x m ( p ) ,  x n ( p )  –  1 ,  z )  <  ε . 

 

3 Hence 

φ ( ε )  ≤  φ ( ρ ( x m ( p ) ,  x n ( p ) ,  z ) )  

   =  φ ( ρ ( T x m ( p )  – 1 ,  T x n ( p )  – 1 ,  z ) )     

≤ Kmax{φ ( ρ ( x m ( p )  – 1 ,  x n ( p )  – 1 ,  z ) ) ,  α m ( p )  – 1 ,  α n ( p )  – 1 }    (5) 

Since {αn} → 0 as n → ∞, there exists a P ∈ N such that αn < φ (ε ) for all n > P. Hence 

by (5),  for n(p),  m(p) > P+1, 

φ ( ε )  ≤  K  φ ( ρ ( x m ( p ) - 1 ,  x n ( p ) - 1 ,  z ) )  

 

       ≤  K[φ ( ρ ( x m ( p ) - 1 ,  x m ( p ) ,  z ) ) +  ρ ( x m ( p ) ,  x n ( p ) - 1 ,  z ) +  ρ ( x m ( p ) - 1 ,  x n ( p ) - 1 , x m ( p ) ) ]  

 

       ≤  Kφ ( ρ ( x m ( p ) - 1 ,  x m ( p ) ,  z ) )  +  ε  

Taking P → ∞ and by using (4), we obtain  

 φ ( ε )  ≤  K  φ ( ε ) <  φ ( ε ) , which is a contradiction.  

Therefore {xn} is a Cauchy sequence. As X is complete, {xn} converges to x say in X.  

Now consider 

 φ (ρ(Tx, xn, z) )  ≤   φ (ρ (Tx, Txn – 1, z) )  

     ≤   Kmax{ φ (ρ(x, xn – 1, z) ,  ρ (x, Tx, z) ) ,  α n  – 1 )} 

Taking l imi ts  as  n → ∞, we have      

  φ (ρ (Tx, x, z) )   ≤   Kφ (ρ (x, Tx, z) )   

 ⇒  φ (ρ(Tx, x, z) )   =   0    ⟹   Tx  =  x  

Uniqueness of the fixed point follows evidently from (1).  Hence the theorem. 

 

1. Fixed point theorem for a pair of self maps 
 

Theorem 2. Let (X, ρ) be a bounded complete 2-metric space and S and T be self  maps 

of X such that  ST = TS.  Further,  assume that  S and T satisfy the following inequality: 
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there exists K ∈ (0, 1) and φ  ∈  ϕ  such that, for z ∈ X 

 φ (ρ(Sx, Ty, z)  ≤  Kmax{  φ (ρ(x, y, z) ,  φ (ρ(x, Sx, z)+
φ(ρ(y,   T y,   z)

2
 }                (6) 

 for all x, y, z ∈ X. Then one of S and T (and hence both) have a unique common f ixed 

point  in  X.  For  any x 0  ∈  X,  we def ine the sequence {x n} in X by x2n+1 = Sx2n 

and x2n+2 = Tx2n+1 for n = 0, 1, 2 …..  (7) 

To prove the theorem we need the following lemmas. 

 

 Lemma 1. Under the hypothesis of Theorem 2, for any x0 ∈ X,  

            the sequence {xn} defined by [7] satisfies the following inequalities: 

 

  φ (ρ(x2n, Tx2n, z) )    ≤   K
2 n

 φ (ρ (x0, Tx0, z) )       (8)  

  φ (ρ(x2n+2, Tx2n, z) )   ≤  K  φ (ρ (x2n, Tx2n, z) )  

                ≤   K
2 n + 1

 φ (ρ (x0, Tx0, z) )      (9)  

φ (ρ(x2n+1, Sx2n+1, z) )  ≤   K
2 n

 φ (ρ(x1, Tx1, z) )      (10)  

φ (ρ(x2n+3, Sx2n+1, z) )  ≤   K  φ (ρ (x2n+1, Sx2n+1, z) )  

           ≤  K
2 n + 1

 φ (ρ (x1, Sx1, z) )     (11)  

Proof of (8):  
 

φ (ρ(x2, Tx2, z) )   =   φ (ρ (STx0, Tx2, z) )  

  

    ≤  Kmax{  φ (ρ(Tx0, x2, z) ) ,  φ (ρ (Tx0, x2, z) ) ,  φ (ρ(x2, Tx2, z) )}   

  

    =   K  φ (ρ (Tx0, x2, z) )        (12)  

Cons ider   

φ (ρ(Tx0, x2, z) )   =   φ (ρ (Tx0, STx0, z) ) ,  

   

    ≤   Kmax{  φ (ρ(x0, Tx0, z) ) ,  φ (ρ (x0, Tx0, z) ) ,  φ (ρ(Tx0, x2, z) )}  

  

               =   K φ (ρ(x0, Tx0, z) )         (13)  

  

By (12) and (13), we obtain 

φ (ρ(x2, Tx2, z) )    ≤  K
2
 φ (ρ(x0, Tx0, z) )  

Hence the inequality (8) is valid for n = 1. We shall assume that (8) is true for       n  =  p  

f o r  s o me  p  ∈  N ,  p  >  1  

i .e. ,  φ (ρ (x2p, Tx2p, z) )   ≤   K
2 n

 φ (ρ(x0, Tx0, z) )  (14) 

Now consider . ,   

φ (ρ(x2(p+1), Tx2(p+1), z) )  =   φ (ρ(STx2p, Tx2(p+1), z) )  

 

                   ≤  K  max {φ (ρ (Tx2p, x2(p+1), z) ) ,  φ (ρ(Tx2p, Tx2(p+1), z) ) ,     

 φ (ρ(x2(p+1), Tx2(p+1), z) )}  

 

              =   K φ (ρ(Tx2p, x2(p+1), z) )      (15)  

and 

φ (ρ(Tx2p, x2(p+1), z) )    =   φ (ρ(Tx2p, STx2p, z) )  

   ≤  K  max{φ (ρ (x2p,T x2p, z) ) ,  φ (ρ(x2p, Tx2p, z) ) ,                                                     

     φ (ρ (Tx2p, STx2p, z) )}  
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                           =   Kφ (ρ(x2p, Tx2p, z) )                      (16)  

 

By (15) and (16) and by using the induction hypothesis (14), we have 

 

φ (ρ(x2(p+1), Tx2(p+1), z) )   ≤  K
2
φ (ρ(x2p, Tx2p, z) )  ≤   K

2 ( p + 1 )
φ (ρ (x0, Tx0, z) )  

Thus inequality (8) holds for n = p + 1. This completes proof of (8).  

 

Proof of (9) 
φ (ρ(x2n+2, Tx2n, z) )    =    φ (ρ(STx2n, Tx2n, z) )  

                  ≤   K  max{φ (ρ(Tx2n, x2n, z) ) ,  φ (ρ (x2n, Tx2n, z) ) ,                                                     

       φ (ρ (Tx2n, x2n+2, z) )}  

                  =    Kφ (ρ (x2n, Tx2n, z) )  

                  =    K
2 n + 1

φ (ρ(x0, Tx0, z) )   f rom (8) .  

This  proves  (9) .  

Proofs (10) and (11) are similar to (8) and (9) respectively. 

 

Lemma 2 .  Un d er  t he  h ypo t he s i s  o f  t h eo re m 2  a s su me  tha t  x n  ≠ x n + 1     (n = 0, 1, 

2, 3 ... ) . Then for any m, n ∈ N with n > m, the following inequalities hold. 

 

i) φ (ρ(x2n, x2m, z) )  ≤  K
2 m  

φ(K)   

ii) φ (ρ(x2n+1, x2m+1, z) )  ≤  K
2 m + 1  

φ(K)                                                                                                                                                                                                                                                              

iii) φ (ρ(x2n+1, x2m, z) )  ≤  K
2 m  

φ(K)  

iv) φ (ρ(x2n, x2m+1, z) )  ≤  K
2 m + 1  

φ(K)  

where K is a diameter of X. 

 

Proof. 
 

      Let βn = ρ(xn, xn+1, z) and αn = φ(βn), z ∈ X. By using the inequality (6),     it 

can be easily seen that αn ≤ Kαn-1      (n = 1, 2, 3 ...).    (17)   

We shall prove (i) – (iv) by induction on m.  

( i )  φ (ρ(x2n, x2, z) )   =   φ (ρ(Tx2n-1, STx0, z) )   

            ≤  K  max{φ (ρ(x2n-1,T x0, z) ) ,  φ (ρ(x2n-1, Tx2n-1, z) ) ,  

                            φ (ρ (Tx0, x2, z) )               (18)  

                                                                           

      φ (ρ(x2n-1, x1, z) )   =  φ (ρ (Sx2n-1, Tx0, z) )  

 

≤   K  max{φ (ρ(x2n-2, x0, z) ) ,  φ (ρ (x2n-2, Tx2n-2, z) ) ,     

      φ (ρ(x0, Tx0, z) )}           (19)  

                                                    Put n = 0 in 9 of Lemma 

1, we obtain               

 

      φ (ρ(x2,Tx0, z) )    ≤    K φ (ρ(x0, Tx0, z) )                       (20) 

Hence from (17), (18), (19) and (20) we have 

      φ (ρ(x2n, x2, z) )    ≤    K
2
{ φ (ρ (x2n-2, x0, z) ) ,  φ (ρ(x2n-2, Tx2n-2, z) ) ,     

    φ (ρ(x0, Tx0, z) )}  

        ≤    K
2
φ(K)        
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 Hence  (i)  is true for m = 1.        

 Assume (i)  is true for m = 1 

      φ (ρ(x2n, x2(m+1), z) )   =   K
2 ( m - 1 )

φ(K)     n  >  m –  1       (21)  

Now consider 

φ (ρ(x2n, x2m, z) )   =   φ (ρ (Tx2n-1, STx2m-2, z) )  

 

          ≤  Kmax{φ (ρ(x2n-1, Tx2m-2, z) ) ,φ (ρ (x2n-1, Tx2n-1, z) ) ,                                                                                                                                                                                                                                                              

                        φ (ρ(Tx2m-2, x2m, z) )}               (22)  

 

Then we have 

 

φ (ρ(x2n-1, Tx2m-2, z) )   =   φ (ρ(Sx2n-2, Tx2m-2, z) )  

 

                   ≤  K max{φ (ρ (x2n-2, x2m-2, z) ) ,  α 2 n - 2 ,                                                

φ (ρ(x2m-2, Tx2m-2, z) )}    (23)          

     Put n = m – 1 in (9) of Lemma 1. Then we have 

 φ (ρ(x2n-2, Tx2m-2, z) )  ≤  Kφ (ρ(x2m-2, Tx2m-2, z) )        (24)  

 

Hence  by (22) ,  (23)  and (24) ,  we  have  

 

φ (ρ(x2n, x2m, z) )  ≤ K
2
 max{φ (ρ(x2n-2, x2m-2, z) ) ,  α 2 n - 2 ,  φ (ρ (x2m-2, Tx2m-2, z) )}      

              (25)  

 

 By induction hypothesis (21), 

 

       φ (ρ(x2n-2, x2m-2, z) )  ≤  K
2 ( m - 2 )

 φ (K)             (26) 

       

Again by (9) of Lemma 1 

 

φ (ρ(x2m-2, Tx2m-2, z) )  ≤  K
2 ( m - 1 )

 φ (ρ (x0, Tx0, z) )  =  K
2 m - 2

φ(K)     (27)   

 

By (25), (26) and (27), we obtain 

 

φ (ρ(x2n, x2m, z) )   ≤   K
2
max{ K

2 ( m  –  1 )
φ(K) ,  K

2 ( n  –  1 )
α 0 ,  K

2 ( m  –  1 )
φ(K)}  =   K

2 m  
max{

 

φ(K) ,  K
2 ( n - m )  

α 0 ,  φ(K)}  

       =   K
2 m  

φ(K)   which proves (i )  

 

Similarly, we can prove (ii), (iii) and (iv) by using Lemma 1. 

Thus we have the following result. 

 

Proposition 1. Under the hypothesis of Theorem 2, for any x0 ∈ X in the sequence {xn} 

defined by x2n+1 = Sx2n and x2n+2 = Tx2n+1 (n = 0, 1, 2, ….) if xn ≠ xn+1 for n = 0, 1, 2, …, then  

  φ (ρ (xm, xn, z) )  ≤  K
m  

φ(K)  (z  ∈  X) ,  

for any m, n ∈ N provided n > m, where K is the diameter of X. 

    By proposition we prove the Theorem 2. 
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Proof of Theorem 2: Let x0 ∈ X.  Let {xn} be defined by 

x2n+1 = Sx2n and x2n+2 = Tx2n+1,   (n ∈ N). 

Suppose for some n ∈ N, x2n+2 = x2n, then Sx2n = x2n+1 = x2n such that x2n is a fixed point of S. 

Hence    

 

φ (ρ(Tx2n, x2n, z) )   =   φ (ρ (Tx2n, Sx2n, z) )  

 

≤   K  max{φ (ρ(x2n, x2n, z) ) ,φ (ρ (x2n, Tx2n, z) ) ,                    

    φ (ρ (x2n, Sx2n, z) )}  

     

=   K φ (ρ(x2n, Tx2n, z) )  

 

⇒   ρ (Tx2n, x2n, z) )  =  0   ⇒  Tx 2 n  =  x 2 n    

   

Uniqueness of common fixed point evidently follows from the inequality (6).  

Similarly if x2n+2 = x2n+1, then Tx2n+1 = x2n+2 = x2n+1 

  ∴ x2n+1 is a fixed point for T. Hence by (6) x2n+1 is also a unique fixed point 

 for S. 

We shall  assume that  x2n ≠ xn+1 for al l  n ∈  N. Let ε >  0. Then choose M such that 

K
M

 φ(K)  <  φ(ε) .  Then for n  >  m  >  M,    z ∈ X ,     φ (ρ(xm, xn, 

z) )  ≤  K
m  

φ(K)  <  K
M

 φ(K)  <  φ(ε)   (∵  by Proposit ion 1)   

⇒ρ(xm, xn, z) )  <  ε  ⇒{xn} is a Cauchy sequence. Since X is complete,         there exists 

z ∈ X such that  lim xn = z. 

                             n→∞   

We shall prove that Tz = z and Sz = z 

If  possible, Tz ≠ 
 
z. Then, for u ∈ X,  

φ (ρ(Tz, x2n+1, u) )  =  φ (ρ (Tz, Sx2n, u ))  

  ≤ K max{φ (ρ(z, x2n, u) ) ,φ (ρ(z, Tz, u)) ,φ (ρ(x2n, x2n+1, u ))} 

Taking limit as n → ∞, as φ is continuous.  

φ (ρ(Tz, z, u) )  ≤  K  φ (ρ(z, Tz, u) )  = K φ (ρ(Tz, z, u) )  <  φ (ρ(Tz, z, u))  

which is a contradiction. Hence φ (ρ(Tz, z, u))  = 0 ⇒ Tz = z. This z is also a 

fixed point of S, by (6). 

 

                                 Hence the theorem. 
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